
Trip Server

Frank Dean

This User Guide is for using Trip, version 2.0.0-rc.1, 3 May 2023 in a browser. Trip is a an
application supporting trip recording and itinerary planning.

Copyright c© 2021-2023 Frank Dean

i

Table of Contents

1 Overview . 1

2 Invoking trip-server . 2
2.1 Synopsis . 2
2.2 Description . 2
2.3 Options . 2

3 Upgrading from Trip Server v1 3
3.1 Database URI . 3
3.2 Database Changes . 3

3.2.1 Session Table . 3
3.2.2 Passwords . 3

4 PostgreSQL Setup . 4
4.1 Creating a Database User . 4
4.2 Creating the trip Database . 4

4.2.1 Database User Permissions . 4
4.3 Creating Tables and Roles . 5

4.3.1 Lookup Tables . 5
4.3.2 Indexes for Query Performance . 6

4.4 Creating an Initial Admin User . 6

5 Configuration . 7
5.1 Tile Server Configuration . 7
5.2 Elevation Data . 8

6 Internationalisation and Localisation 10

7 Proxy Web Servers . 11
7.1 Nginx Web Server . 11
7.2 Apache . 11

7.2.1 Reverse Proxy Configuration . 11
7.2.2 Redirecting to HTTPS . 12
7.2.3 Redirecting Traccar Client URLs . 12

8 Testing and Developing Trip 13
8.1 Vagrant . 13

8.1.1 Quick Start Using Vagrant . 13
8.1.2 Trouble-shooting . 14

ii

8.1.2.1 Guest additions on this VM do
not match the installed version . 14

8.1.3 Vagrant Errors . 15
8.1.3.1 incompatible character encodings . 15

8.2 Testing with Curl . 15
8.3 Load Testing . 15

9 Miscellaneous . 17
9.1 Useful Queries . 17

9.1.1 Map Tiles . 17
9.1.1.1 Freeing System Disk Space . 17

9.1.2 Useful Queries for Testing . 18
9.1.2.1 Copying Data . 18

10 Database Backup . 19

1

1 Overview

This document describes using trip-server — Trip Recording and Itinerary Planning,
version 2.0.0-rc.1, 3 May 2023.

2

2 Invoking trip-server

2.1 Synopsis

trip-server [-h | –help] [-v | –version] [-s | –listen { address }] [-p | –port
{ port }] [-r | –root { directory }] [-e | –expire-sessions] [-c | –config-file {
filename }] [-u | –upgrade] [-V | –verbose]

2.2 Description

trip-server is an application supporting trip recording and itinerary planning.

The intended use is for a hiker, mountain-biker or other adventurer, to be able to publish
and share their planned itinerary, then subsequently log their positions at intervals, allowing
someone else the ability to monitor their progress.

In the event of contact being lost, the plans and tracking information can be passed to
rescue services etc., to assist with locating the missing adventurer.

2.3 Options

-h, –help Show help, then exit.

-v, –version
Show version information, then exit.

-s, –listen=ADDRESS
Listen address, e.g. 0.0.0.0

-p, –port=PORT
Port number, e.g. 8080.

-r, –root=DIRECTORY
Document root directory.

-e, –expire-sessions
Expires any active user web sessions.

-c, –config-file=FILENAME
Configuration file name.

-u, –upgrade
Upgrade the database.

-V, –verbose
Verbose output

3

3 Upgrading from Trip Server v1

3.1 Database URI

There are some differences between what the Node.js pgmodule (https://github.com/
brianc/node-postgres) will accept and those defined as the PostgreSQL libpq Connec-
tion Strings. (https://www.postgresql.org/docs/current/libpq-connect.html#
LIBPQ-CONNSTRING)

The former allows a socket scheme and a database parameter. The latter requires
postgresql and dbname to be use respectively. It should be possible to form the connect
string as a valid libpq URI without any query parameters, which the Node.js pg module
will also work with, including connecting via a socket. This allows both versions to run
using the same application configuration file.

E.g.

Connect via a socket, using the peer method:

uri: "postgresql://%2Fvar%2Frun%2Fpostgresql/trip"

3.2 Database Changes

The pgcrypto extension is needed for user password validation. Run the following command
in the Trip database:

$ psql trip

CREATE EXTENSION pgcrypto;

This is also executed when running trip-server with the --upgrade option.

3.2.1 Session Table

There is a new table to handle user sessions. It is created after running trip-server with
the --upgrade option.

3.2.2 Passwords

The Blowfish algorithm appears to have been changed in PostgreSQL 13. The following
SQL will update old style encrypted passwords to work in PostgreSQL 13.

UPDATE usertable SET password = ’$2a’ || SUBSTRING(password, 4, 57)

WHERE password NOT LIKE ’$2a%’;

This is also executed when running trip-server with the --upgrade option.

https://github.com/brianc/node-postgres
https://github.com/brianc/node-postgres
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

4

4 PostgreSQL Setup

The following packages are required to run the application with PostgreSQL:

• postgis

On a Debian distribution, install the postgis and postgresql packages.

4.1 Creating a Database User

Create a user for the application, with minimal rights, entering the password to be used by
the trip system user, when prompted by the createuser utility:

$ sudo -v

$ sudo -u postgres createuser -P trip

4.2 Creating the trip Database

Create a database for use by the application:

$ sudo -u postgres createdb trip --owner=trip --locale=en_GB.UTF-8

If the default locale for the database does not match the running user’s locale, e.g.
en_GB.UTF-8, specify the locale when creating it. E.g.:

$ sudo -u postgres createdb trip --owner=trip --locale=en_GB.UTF-8 \

--template=template0

4.2.1 Database User Permissions

Allow the trip user access to the database by editing the PostgreSQL database configura-
tion:

$ sudoedit /etc/postgresql/13/main/pg_hba.conf

Insert a line, usually as the first non-comment line, to pg_hba.conf, with:

• TYPE = local

• DATABASE = trip

• USER = trip

• ADDRESS =

• METHOD = md5

e.g

TYPE DATABASE USER ADDRESS METHOD

local trip trip md5

Restart PostgreSQL:

$ sudo systemctl restart postgresql

Test connecting to the database as the trip user and create the pgcrypto extension.

$ psql -U trip -d trip

Password for user trip:

psql (13.5 (Debian 13.5-0+deb11u1))

Type "help" for help.

Whilst connected to the database, create the pgcrypto module:

trip=> CREATE EXTENSION pgcrypto;

Chapter 4: PostgreSQL Setup 5

4.3 Creating Tables and Roles

As a Unix user who is also a postgresql superuser:

$ cd ./provisioning/schema

$ psql trip <10_trip_role.sql

$ psql trip <20_schema.sql

$ psql trip <30_permissions.sql

Optionally, populate the database with data that can be used to perform end-to-end
tests. Do not insert the test data into a production database as it contains default applica-
tion admin user credentials.

$ psql trip <90_test-data.sql

4.3.1 Lookup Tables

The following tables are used to define lookup values for select boxes in the web application:

waypoint_symbol

Key-value pairs describing waypoint symbols. The key is written to waypoint
entries when downloading GPX files.

track_color

Key-value pairs together with an HTML colour code. The ’key’ is written to
track entries when downloading GPX files and the HTML colour code is used
to render the tracks on the itinerary map page.

georef_format

Key-value pairs define how to format output of latitude and longitude values
on the itinerary waypoint edit page. Format parameters are defined using the
{%} symbol and have the following meanings:

• %d - degrees

• %m - minutes

• %s - seconds

• %D - zero prefix single digit degree values

• %M - zero prefix single digit minute values

• %S - zero prefix single digit second values

• %c - output the cardinal value, S, E, W or N

• %i - output a minus sign for W and S

• %p - output a minus sing for W and S and a plus sign for E and N

E.g. a format string of %d◦%M’%S”%c would result in a lat/long value of ‘1.5,-2.5’
being displayed as 1◦30’00”N 2◦30’00”W

Scripts to create default values for these lookup tables are in the ./provisioning/schema
folder;

• 60_waypoint_symbols.sql

• 40_path_colors.sql

• 50_georef_formats.sql

Chapter 4: PostgreSQL Setup 6

The default waypoint symbols and track colours are generally appropriate for Garmin
devices. In fact, the colours are the only ones allowed by the Garmin Extensions XSD
(http://www8.garmin.com/xmlschemas/GpxExtensionsv3.xsd).

4.3.2 Indexes for Query Performance

The location table has an index that is clustered on the time column to improve the query
performance of date range queries. If the table becomes large and performance degrades,
run the psql cluster command from time-to-time to re-cluster it. Note an exclusive lock
is placed on the table for the duration of the cluster command execution.

See http://dba.stackexchange.com/questions/39589/optimizing-queries-on-a-range-of-timestamps-two-columns
for more information.

4.4 Creating an Initial Admin User

An initial admin user needs to be created in the database. Thereafter, that user main-
tains other users using the web application. Creating the initial admin user fundamentally
consists of making entries in the usertable, role and user_role tables.

Firstly, create the entries in the role table by running the following script using psql:

INSERT INTO role (name) VALUES (’Admin’), (’User’);

An initial admin user can be created similarly to the following, replacing each value
appropriately:

INSERT INTO usertable (firstname, lastname, email, uuid, password, nickname)

VALUES (’admin’, ’’, ’admin@trip.test’, gen_random_uuid(),

crypt(’SECRET’, gen_salt(’bf’)), ’admin’);

INSERT INTO user_role (user_id, role_id)

VALUES (

(SELECT id FROM usertable u WHERE u.nickname=’admin’),

(SELECT id FROM role WHERE name=’Admin’)

);

http://www8.garmin.com/xmlschemas/GpxExtensionsv3.xsd
http://www8.garmin.com/xmlschemas/GpxExtensionsv3.xsd
http://dba.stackexchange.com/questions/39589/optimizing-queries-on-a-range-of-timestamps-two-columns

7

5 Configuration

Please refer to the comments in the trip-server-dist.yaml file for information on the
application’s configuration parameters.

By default the application looks for its configuration file under the installation prefix
(usually /usr/local) named ./etc/trip-server.yaml. Alternatively, it can be overridden
with the --config-file command line option.

The configuration file should be readable by the user running trip-server, e.g. trip,
but not world-readable.

On a Debian system, you can create a system user to run the application as follows:

sudo adduser trip --system --group --home /nonexistent --no-create-home

On other systems, you will probably need to use the less friendly useradd command.

Run trip-server using the trip user and set the file permissions as follows:

$ sudo chmod 0640 /usr/local/etc/trip-server.yaml

$ sudo chown trip:trip /usr/local/etc/trip-server.yaml

Refer to the Vagrant configurations in the source distribution of trip-server, under the
./provisioning directories for information relating to configuring and running the appli-
cation as a daemon under systemd.

5.1 Tile Server Configuration

Most if not all tile server providers have policies that you must comply with
and there may be sanctions if you fail to do so. E.g. If you are using the
OpenStreetMap tile server, read and comply with their Tile Usage Policy
(https://operations.osmfoundation.org/policies/tiles/). Please ensure you
configure the following entries correctly for the appropriate element of the tile.providers
section(s) of config.yaml.

userAgentInfo

This is the e-mail address at which the system administrators can contact you

refererInfo

A link to a public website with information about your application’s deployment

Note these entries are sent in the HTTP header of each tile request and will therefore
end up in system logs etc. Currently the tile requests are sent over HTTP, therefore you
should not mind this data being exposed.

The tile.providers[x].mapLayer entries provide the ability to display tile map attri-
butions most if not all tile providers require you to display.

The mapLayer.name attribute will be displayed when the map layers icon is activated.
Only xyz map types are supported, so the mapLayer.type attribute should always be xyz.

Map attributions are displayed on the map using the mapLayer.tileAttributions sec-
tion of the tile.providers attribute, which allows attributions to be rendered with ap-
propriate HTML links. The tileAttributions are an array of items that have either text,
text and link or just link attributes. If the entry contains just text, the text will be displayed
in the map attribution. If a link is included, the text will be wrapped in HTML link tags

https://operations.osmfoundation.org/policies/tiles/
https://operations.osmfoundation.org/policies/tiles/

Chapter 5: Configuration 8

and included in the map attribution. The entries are displayed in the sequence they have
been defined.

For development, if no map tile provider is configured, dummy tiles are displayed show-
ing the x, y & z coordinates of the tile. Alternatively, you can use https://www.docker.com
(Docker) to run a small tile server. See the section on Docker in this application’s README
in the source distribution and the various docker-compose-map-*.yaml configuration files
for hints.

5.2 Elevation Data

The Consortium for Spatial Information (http://srtm.csi.cgiar.org/)
(CGIAR CSI) make Digital Elevation Model (https://en.wikipedia.org/wiki/
Digital_elevation_model) data covering about 80% of the globe, available for download.
It has been sourced and enhanced from data gathered by the NASA Shuttle Radar
Topographic Mission (SRTM).

From the main page of the CGIAR CSI website, follow the link to SRTM Data to download
zip files that contain tiff files with 5m x 5m elevation data.

Extract the tiff files to a folder, e.g. /var/local/elevation-data and configure an
elevation section in config.yaml, e.g.

elevation:

tileCacheMs: 60000

datasetDir: /var/local/elevation-data/

When the Trip Server application is started, it reads all the tiff files in the folder spec-
ified by the elevation.datasetDir parameter and creates an in memory index containing
the area covered by each tile. When elevation data is required for a specific location, the rel-
evant tile is loaded, the response provided, and the tile retained in memory for the number
of milliseconds specified by the elevation.tileCacheMs parameter.

The tiff files take up a lot of space. Where space is at a premium, consider storing them
in a compressed file system, e.g. on Linux use Squashfs. (http://squashfs.sourceforge.
net)

e.g.

1. Download files to ~/downloads/srtm

$ mkdir -p ~/downloads/srtm

$ cd ~/downloads/srtm

$ wget http://srtm.csi.cgiar.org/wp-content/uploads/files/srtm_5x5/tiff/srtm_72_22.zip

2. Extract the tiff files to ~/tmp/tiff

$ mkdir -p ~/tmp/tiff

$ cd ~/tmp/tiff

$ find ~/downlods/srtm -name ’*.zip’ -exec unzip -n ’{}’ ’*.tif’ \;

3. Create a Squashfs compressed file containing the tiff images

$ mksquashfs ~/tmp/tiff /var/local/elevation-data.squashfs -no-recovery

The -no-recovery option is to stop Squashfs leaving a recovery file behind in the
destination folder. However, it does mean that should the operation fail, there is no
recovery information to unwind the command. This is probably more of a potential
problem when appending to an existing Squashfs file.

Docker
Docker
http://srtm.csi.cgiar.org/
https://en.wikipedia.org/wiki/Digital_elevation_model
https://en.wikipedia.org/wiki/Digital_elevation_model
http://squashfs.sourceforge.net
http://squashfs.sourceforge.net

Chapter 5: Configuration 9

4. Optionally, delete or archive the downloaded zip files to free up space.

5. Download more files, extract them and squash them using the above steps. Repeating
the mksquashfs command as above will append to an existing Squashfs file.

6. You can list the contents of the Squashfs file with:

$ unsquashfs -i -ll /var/local/elevation-data.squashfs

7. Test mounting the Squashfs file

$ mkdir -p /var/local/elevation-data/

$ sudo mount -t squashfs /var/local/elevation-data.squashfs /var/local/elevation-data/

$ ls /var/local/elevation-data/

$ sudo umount /var/local/elevation-data

8. Add an entry to /etc/fstab to mount the Squashfs file on boot:

$ echo ’/var/local/elevation-data.squashfs \

/var/local/elevation-data squashfs ro,defaults 0 0’ \

| sudo tee -a /etc/fstab

9. Mount using the /etc/fstab entry:

$ sudo mount /var/local/elevation-data

$ ls /var/local/elevation-data

$ sudo umount /var/local/elevation-data

10. If need be in the future, you can extract the files from the Squashfs file with:

$ unsquashfs -i /var/local/elevation-data.squashfs

Which will extract all the files to a sub-folder of the current working folder named
squashfs-root.

Use the -f parameter if the squashfs-root folder already exists.

11. To extract select files, create another file containing the names of the files to be ex-
tracted, prefixed by a forward-slash. e.g. /srtm_11_03.tiff.

12. $ unsquashfs -i -e list-of-files.txt /var/local/elevation-data.squashfs

13. See SquashFS HOWTO (http://tldp.org/HOWTO/SquashFS-HOWTO/
creatingandusing.html) for more information

http://tldp.org/HOWTO/SquashFS-HOWTO/creatingandusing.html
http://tldp.org/HOWTO/SquashFS-HOWTO/creatingandusing.html

10

6 Internationalisation and Localisation

A quick way to test localisation is to temporarily set the environment variable LC_ALL when
running the server, e.g.

$ LC_ALL=es_ES.UTF-8 ./src/trip-server

To update the PO files for translation:

$ cd po

$ make update-po

After updating the translations, run the same command to re-create the binary files,
then install them in the correct location with:

$ make

$ sudo make install

11

7 Proxy Web Servers

The section describes deploying Trip with either the Apache or Nginx web servers.

7.1 Nginx Web Server

Setting up Nginx isn’t documented here but can readily be determined by looking at the
Vagrant setup scripts under the ./provisioning/ folder in the source distribution, or by
deploying using Vagrant and examining the working Vagrant installation.

7.2 Apache

Optionally, the application can be run behind an Apache (http://httpd.apache.org/)
server, proxying requests to the application.

This has the benefit of allowing the application to co-exist with other applications on
the same server instance all running on the standard port 80. Security of the server can
also be enhanced by installing and configuring the mod-security Apache module (https://
modsecurity.org/).

7.2.1 Reverse Proxy Configuration

Configure Apache 2 to enable the mod_proxy and proxy_wstunnels modules. On Debian
this can be done with:

$ sudo a2enmod proxy

$ sudo a2enmod proxy_wstunnel

$ sudo a2enmod rewrite

The application should be run over HTTPS to keep the login credentials secure, otherwise
others can see and re-use those credentials.

Modify the server configuration to implement the following Apache rewrite rules. Note
that the default socket.io path is prefixed with wstrack\ so that multiple applications
using websockets can be run on the same Apache server using different prefixes. (TRIP uses
websockets to provide updates to the tracking map.) The TRIP web client app will prefix
the path when it is not calling a localhost URL. These rules need to be in a <VirtualHost

default:443/> or <Directory/> section of the mod_ssl configuration file.

RewriteEngine on

RewriteCond %{REQUEST_URI} ^/wstrack/socket.io [NC]

RewriteCond %{QUERY_STRING} transport=websocket [NC]

RewriteRule /wstrack/(.*) ws://localhost:8080/$1 [P,L]

Add the following to trip.conf outside the <directory\> directive:

<IfModule mod_proxy.c>

ProxyPass /wstrack/socket.io/ http://localhost:8080/socket.io/

ProxyPassReverse /wstrack/socket.io/ http://localhost:8080/socket.io/

ProxyPass /trip/rest http://localhost:8080

ProxyPassReverse /trip/rest http://localhost:8080

</IfModule>

http://httpd.apache.org/
https://modsecurity.org/
https://modsecurity.org/

Chapter 7: Proxy Web Servers 12

7.2.2 Redirecting to HTTPS

It is useful to ensure all users use HTTPS by providing a redirect rule to redirect any HTTP
requests to use HTTPS. However, some logging clients do not support HTTP, so it may be
preferable to exclude the logging patterns from redirection. Generally, the logging URLs
will be of the form http://${HOST}:${PORT}/trip/rest/log_point.

This rule will redirect URLs excepting those like /trip/rest/ which can then be used
by tracker clients that do not support HTTPS or redirections, to log locations without being
redirected.

This rule needs to be in the <VirtualHost *:80/> section of the HTTP server.

RedirectMatch ^/trip/app/(.*)$ https://${MY_HOST}/trip/app/$1

7.2.3 Redirecting Traccar Client URLs

The Traccar Client app (https://www.traccar.org/client/) does not provide a facility
to define a URL prefix. All calls are to the server root.

A workaround is to configure the Apache server to redirect both HTTP and HTTPS
requests that match the pattern of Traccar Client logging requests to the /trip/rest/log_
point URL prefix.

To support using the Traccar Client, enter the following in the Apache <VirtualHost/>
sections:

Redirect for Traccar Client

<IfModule mod_rewrite.c>

RewriteEngine On

RewriteCond "%{QUERY_STRING}" "^id=[\da-f]{8}-[\da-f]{4}-[\da-f]{4}-[\da-f]{4}-[\da-f]{12}×tamp=\d+&lat=[-.\d]+&lon=[-.\d]+"

RewriteRule ^/ /trip/rest/log_point [PT,QSA]

</IfModule>

https://www.traccar.org/client/

13

8 Testing and Developing Trip

8.1 Vagrant

Vagrant (https://www.vagrantup.com) provides a simple and powerful development envi-
ronment.

8.1.1 Quick Start Using Vagrant

This option provides a working example of the application running in a VirtualBox
(https://www.virtualbox.org) virtual machine (VM) for those [operating systems
supported by Vagrant. (https://www.vagrantup.com/downloads.html) This also
provides a complete example of running the application behind the Nginx (https://
nginx.org) ("engine x") HTTP reverse proxy server. It is suitable for development or
demonstration, but not as a production system.

Note: Installing all the required software, including the Vagrant box involves down-
loading approximately 600MB of data. Perhaps more of an "easy-start" rather than a
"quick-start".

1. Download and install VirtualBox

2. Download and install Vagrant

3. Clone this repository to a suitable location on the machine you are going to use to host
the application and VM:

$ cd ~/projects

$ git clone git://www.fdsd.co.uk/trip-server-2.git

4. Start the Vagrant VM

$ cd ~/projects/trip-server

$ vagrant up debian

The first time this is run, it will download a Vagrant box (https://www.vagrantup.
com/docs/boxes.html) containing a Debian Linux distribution, then install the re-
quired Debian packages, modify the default configuration and start the TRIP server.

5. Use your browser to navigate to http://localhost:8080/ on the host machine and
login providing the above credentials

6. When finished, halt the server with:

$ vagrant halt debian

Vagrant shares the source folder with the VM so that you can modify the source files on
the host server and immediately impact the deployed application. This gives you a complete
working development environment.

Should you need it, e.g. for running a GUI in Vagrant, the vagrant user’s default
password is usually vagrant.

Rendering of map tiles is disabled by default, in order to respect OpenStreetMap’s Tile
Usage Policy. (https://operations.osmfoundation.org/policies/tiles/) You will
need to follow the instructions below, in the See Section 5.1 [Tile Server Configuration],
page 7, section, before map tiles are rendered.

https://www.vagrantup.com
https://www.virtualbox.org
https://www.virtualbox.org
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://nginx.org
https://nginx.org
https://www.vagrantup.com/docs/boxes.html
https://www.vagrantup.com/docs/boxes.html
http://localhost:8080/
https://operations.osmfoundation.org/policies/tiles/
https://operations.osmfoundation.org/policies/tiles/

Chapter 8: Testing and Developing Trip 14

If you forget the admin user (admin@trip.test) password, login into the VM and mod-
ify the database entry in the PostgreSQL database. Replace SECRET with your desired
password.

$ cd ~/projects/trip-server

$ vagrant ssh

$ psql trip

trip=# UPDATE usertable SET password=crypt(’SECRET’, gen_salt(’bf’)) WHERE nickname=’admin’;

trip=# \q

You can configure the time zone and locale settings by running the following commands
on the guest VM and following the prompts:

$ sudo dpkg-reconfigure tzdata

$ sudo dpkg-reconfigure locales

Optionally, apply the latest Debian updates with:

$ sudo apt-get upgrade

View the Vagrantfile configuration file in the root of the trip-server folder for
some examples you can modify. E.g. you can enable the config.vm.network "public_

network" option to make the VM accessible from the public network. This would allow
you, for example, to test location updates, using a GPS enabled device sharing the same
private LAN as the host VM. Note the warnings in the Vagrant documentation for this
setting (https://www.vagrantup.com/docs/networking/public_network.html), as for
convenience, the VM is insecure by default and design.

8.1.2 Trouble-shooting

8.1.2.1 Guest additions on this VM do not match the installed
version

Guest additions on this VM do not match the installed version of VirtualBox!

This means the installed box needs updating or a different version of VirtualBox needs
to be used.

There is a script in ./provisioning/init.sh that automates the following manual
process:

In the past, it was sufficient simply to install the vagrant-vbguest package. (https://
github.com/dotless-de/vagrant-vbguest)

$ vagrant plugin install vagrant-vbguest

However, if that fails:

1. Check the vagrant-vbguest plugin status:

$ vagrant vbguest --status

2. If the guest version does not match the host, do:

$ vagrant vbguest --do install [$TARGET]

3. This may fail. Halt and restart Vagrant:

$ vagrant halt

4. Restart Vagrant and check the status again:

$ vagrant up

https://www.vagrantup.com/docs/networking/public_network.html
https://www.vagrantup.com/docs/networking/public_network.html
https://github.com/dotless-de/vagrant-vbguest
https://github.com/dotless-de/vagrant-vbguest

Chapter 8: Testing and Developing Trip 15

$ vagrant vbguest --status

The vbguest plugin host and guest versions should now match.

For further information, see the "Existing VM".

8.1.3 Vagrant Errors

8.1.3.1 incompatible character encodings

incompatible character encodings: UTF-8 and ASCII-8BIT (Encoding::CompatibilityError)

If you receive this error when running vagrant up, even after vagrant destroy, use
VirtualBox to see if the VM still exists. If so, delete it from within VirtualBox.

$ VBoxManage list vms

This can occur after deleting the project’s .vagrant sub-folder (e.g. through git clean),
whilst there is still an activate Vagrant instance. Web searches suggest there are other
scenarios that result in a similarly confusing error message.

8.2 Testing with Curl

The application can be tested outside a browser by using the curl command line utility.

1. Login and get a valid session ID, using curl:

$ curl -i -X POST -d email=’user@trip.test’ \

-d password=’rasHuthlutcew7’ \

http://localhost:8080/trip/app/login | grep SESSION_ID

2. Fetching a single page with curl using the session ID obtained from the previous
command:

$ curl -H ’Cookie: TRIP_SESSION_ID=b3571314-d5c4-4690-8164-8384fd748faa’ \

’http://localhost:8080/trip/app/tracks’

3. Submitting a file for file upload:

$ curl -i -H ’Content-Type: multipart/form-data’ \

-H ’Cookie: TRIP_SESSION_ID=b3571314-d5c4-4690-8164-8384fd748faa’ \

’localhost:8080/trip/app/itinerary/upload’ \

--form ’file=@/path/to/file.gpx’ -F ’id=2450’ -F ’action=upload’

8.3 Load Testing

Load testing can be done with curl and ab (Apache Bench, usually installed with Apache
2).

1. Login and get a valid session ID as described above using curl. See Section 8.2 [Testing
with Curl], page 15.

2. Test fetching a single page with ab using the session ID obtained from the previous
command:

$ ab -v 3 \

-C ’TRIP_SESSION_ID=b3571314-d5c4-4690-8164-8384fd748faa’ \

http://localhost:8080/trip/app/tracks

https://stackoverflow.com/questions/20308794/how-to-upgrade-to-virtualbox-guest-additions-on-vm-box#35678489

Chapter 8: Testing and Developing Trip 16

3. Make sure the response gives a valid response, proving the session ID is valid and
working.

4. Add the options -n 1000 -c 50 to perform 1,000 page fetches, with a maximum of 50
concurrent requests. Add the -k option if you want to test keep-alive requests. Make
sure to configure the build with the --enable-keep-alive option.

If using keep-alive, it’s best to limit the number of concurrent requests to no more
than the number of workers the application has been configured to start, otherwise some
requests will fail. As far as I understand, there is no real benefit using keep-alive these
days, so by default it is disabled in the build.

17

9 Miscellaneous

The following sections mostly relate to information around system maintenance and appli-
cation development.

9.1 Useful Queries

9.1.1 Map Tiles

Monthly cumulative totals of map tile usage for the last year:

SELECT year, month, max(count) AS cumulative_total FROM (

SELECT time, extract(year from time) AS year,

extract(month from time) AS month,

extract(day from time) AS day,

count FROM tile_metric ORDER BY time DESC) AS q

GROUP BY q.year, q.month ORDER BY q.year desc, q.month DESC LIMIT 12;

Count of expired tiles:

SELECT count(*) FROM tile WHERE expires < now();

Count of unexpired tiles;

SELECT count(*) FROM tile WHERE expires >= now();

Count of expired tiles older than 90 days:

SELECT count(*) FROM tile WHERE expires < now() AND

updated < now()::timestamp::date - INTERVAL ’90 days’;

Delete expired tiles older than 90 days:

DELETE FROM tile WHERE expires < now() AND

updated < now()::timestamp::date - INTERVAL ’90 days’;

Delete all expired tiles:

DELETE FROM tile WHERE expires < now();

9.1.1.1 Freeing System Disk Space

This section describes freeing up system disk space after deleted tiles (or other records).

To see how much space is begin used by the whole database:

SELECT pg_size_pretty(pg_database_size(’trip’));

To see how much space is being used the the tiles table:

SELECT pg_size_pretty(pg_table_size(’tile’));

Normally, a PostgreSQL installation will be configured to run the VACUUM command
(https://www.postgresql.org/docs/9.4/static/sql-vacuum.html) automatically
from time-to-time. This allows deleted records to be re-used, but does not generally free
up the system disk space being used by the deleted records. To do that, the VACUUM

command needs to be run with the FULL option.

Note that VACUUM FULL requires an exclusive lock on the table it is working on so cannot
be run in parallel with other database operations using the table.

https://www.postgresql.org/docs/9.4/static/sql-vacuum.html
https://www.postgresql.org/docs/9.4/static/sql-vacuum.html

Chapter 9: Miscellaneous 18

See the Recovering Disk Space (https://www.postgresql.org/docs/9.4/static/
routine-vacuuming.html#VACUUM-FOR-SPACE-RECOVERY) section of the PostgreSQL doc-
umentation (https://www.postgresql.org/docs/9.4/static/index.html) for more in-
formation.

To free up the system disk space used by the tiles table, in plsql run:

VACUUM FULL tile;

or

VACUUM (FULL, VERBOSE) tile;

To free up the system disk space used by all tables:

VACUUM FULL;

or

VACUUM (FULL, VERBOSE);

9.1.2 Useful Queries for Testing

Copy location records for user with id 1 to user with id 2

INSERT INTO location (user_id, location, "time", hdop, altitude, speed, bearing)

SELECT 2, location, "time", hdop, altitude, speed, bearing FROM location WHERE user_id = 1;

Moved yesterday’s test location data forward by 1 day:

UPDATE location SET time = time + INTERVAL ’1 day’

WHERE user_id=’1’ AND time >= now()::timestamp::date - INTERVAL ’1 day’

AND time <= now()::timestamp::date;

9.1.2.1 Copying Data

CREATE TABLE temp_location (LIKE location);

INSERT INTO temp_location SELECT * FROM location q

WHERE user_id=29 AND time >= ’2015-12-14’ AND

time <= ’2015-12-14T23:59:59’

UPDATE temp_location SET user_id=3, id=NEXTVAL(’location_seq’::regclass);

INSERT INTO location SELECT * FROM temp_location;

https://www.postgresql.org/docs/9.4/static/routine-vacuuming.html#VACUUM-FOR-SPACE-RECOVERY
https://www.postgresql.org/docs/9.4/static/routine-vacuuming.html#VACUUM-FOR-SPACE-RECOVERY
https://www.postgresql.org/docs/9.4/static/index.html
https://www.postgresql.org/docs/9.4/static/index.html

19

10 Database Backup

Backup just the schema, no data:

$ pg_dump --schema-only --no-owner --no-privileges trip > schema.sql

Backup just the data, keeping the invariably large tile table separate:

$ pg_dump --data-only --no-owner --no-privileges --exclude-table=tile

trip \

> test-data.sql

$ pg_dump --data-only --no-owner --no-privileges --table=tile trip \

> tiles.sql

Backup schema, data and privileges, including commands to recreate tables, excluding
the tile data:

$ pg_dump --clean --if-exists --no-owner --exclude-table-data=tile trip

\

> test-schema-data.sql

The above backup is suitable for every-day backup. If you intend to restore from the
backup as part of your development and test cycle, remove the tile table data exclusion so
that the cache is not lost.

	1 Overview
	2 Invoking trip-server
	Synopsis
	Description
	Options

	3 Upgrading from Trip Server v1
	Database URI
	Database Changes
	Session Table
	Passwords

	4 PostgreSQL Setup
	Creating a Database User
	Creating the trip Database
	Database User Permissions

	Creating Tables and Roles
	Lookup Tables
	Indexes for Query Performance

	Creating an Initial Admin User

	5 Configuration
	Tile Server Configuration
	Elevation Data

	6 Internationalisation and Localisation
	7 Proxy Web Servers
	Nginx Web Server
	Apache
	Reverse Proxy Configuration
	Redirecting to HTTPS
	Redirecting Traccar Client URLs

	8 Testing and Developing Trip
	Vagrant
	Quick Start Using Vagrant
	Trouble-shooting
	Guest additions on this VM do not match the installed version

	Vagrant Errors
	incompatible character encodings

	Testing with Curl
	Load Testing

	9 Miscellaneous
	Useful Queries
	Map Tiles
	Freeing System Disk Space

	Useful Queries for Testing
	Copying Data

	10 Database Backup

